

Eight-Channel Programmable Filter and Gain Signal Conditioning Plug-on VT1503A

User's Manual

The VT1503A manual also applies to Agilent/HP E1413Bs as E1413 Option 13.

Enclosed is the User's Manual for the VT1503A Signal Conditioning Plug-on. Insert this manual in your VT1413C, Agilent/HP E1313 or VT1415A manual behind the "Signal Conditioning Plug-ons" divider.

Copyright © VXI Technology, Inc., 2003

Manual Part Number: 82-0079-000 Printed: June 16, 2003
Printed in U.S.A.

VT1503A

Eight-Channel Programmable Filter and Gain Signal Conditioning Plug-on

Introduction

The VT1503A is a Signal Conditioning Plug-on that provides eight programmable low-pass filters with cutoff frequency settings of 2, 10 and, 100 Hertz (Hz), as well as a 1.5 kHz "pass-through" mode (filter OFF). The eight programmable input amplifiers provide gains of 1, 8 and 64. Also provided is input over-voltage protection and open transducer detection on each channel.

About this Manual

Except where noted, all references to the VT1413C apply to the Agilent/HP E1313 and VT1415A. This manual shows you how to control the Signal Conditioning Plug-on (SCP) using SCPI commands as well as Register-Based commands, and explains the capabilities of this SCP. Finally, it covers specifications for this SCP. The contents of this manual are:

Installation
Identifying the Plug-on
Connecting To The Terminal Module4
Programming With SCPI Commands
Programming With Register Commands
Specifications 12

Installation

Installation for this Plug-on is common to several others and is covered in Chapters 1 and 2 of your VT1413C or Agilent/HP E1313 manual.

Identifying the Plug-on

You'll find the VXI Technology part number on the connector side of the SCP to the left of the serial number bar code. For the VT1503A, the part number is: VT1503A

Connecting To The Terminal Module

This section shows how to make connections to the Terminal Module.

The SCP connections for the Terminal Modules are shown on the stick-on labels that came with the SCP. Use the appropriate label for the type of Terminal Module you have. The connections and appropriate stickers are as follows:

For VT1413C and above Terminal Modules, use stickers for VT1503A SCPs. The connections are shown in Figure 1. For Agilent/HP E1313 Terminal Moduless, use stickers for VT1503A SCPs. The connections are shown in Figures 2 and 3. For Agilent/HP E1413B and below Terminal Modules, use stickers for Agilent/HP E1413 Option 13 SCPs. The connections are shown in Figure 4.

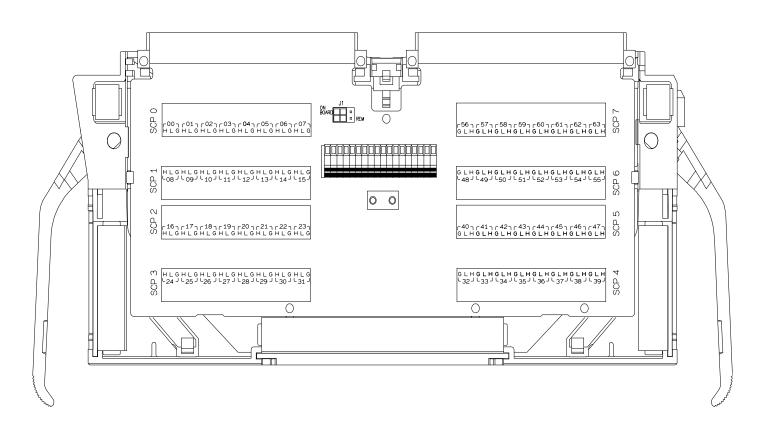


Figure 1 VT1503A C-Size Terminal Module Connections

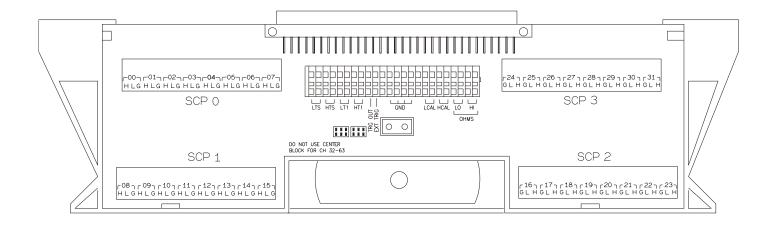


Figure 2 VT1503A B-size Terminal Module Connections (Ch 00-31)

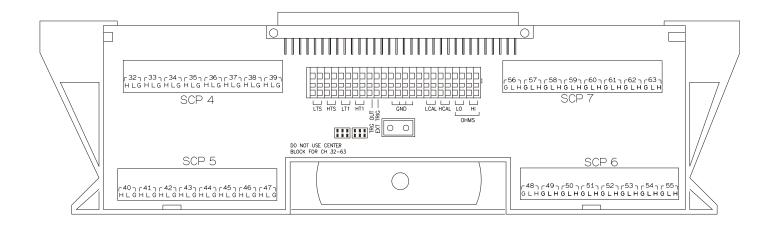


Figure 3 VT1503A B-size Terminal Module Connections (Ch 32-63)

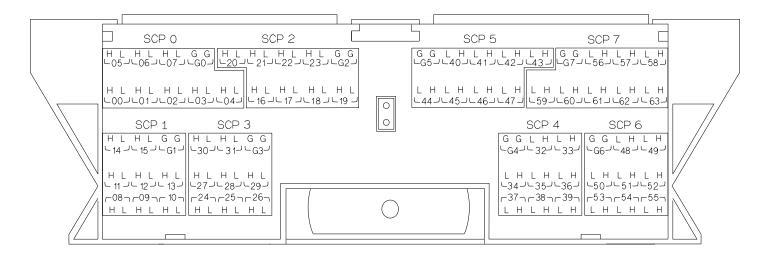


Figure 4 Agilent/HP E1413 Option 13 Terminal Module Connections

Programming With SCPI Commands

The SCPI commands shown here are covered in Chapters 3 and 5 of your VT1413C or Agilent/HP E1313 manual. This section will relate those commands to the parameter values which are specific to this Plug-on.

Checking the ID of the SCP

To verify the SCP type(s) installed on the VT1413C or Agilent/HP E1313 use the SYSTem:CTYPe? (@<channel>) command.

The *channel* parameter specifies a single channel in the channel range covered by the SCP of interest. The first channel number for each of the eight SCP positions are; 0,8,16,24,32,40,48 and 56.

The value returned for the SCP in an Agilent/HP E1413B is: HEWLETT-PACKARD, E1413 Opt 13 8-Channel Amp+Filter SCP, 0, 0

The returned value for the SCP in a VT1413C or Agilent/HP E1313A is: HEWLETT-PACKARD,E1502 8-Channel Amp+Filter SCP,0,0

To determine the type of SCP installed on channels 0 through 7 send

SYST:CTYP? (@100) enter statement here

query SCP type @ ch 0 enter response string

Setting the Filter Cutoff Frequency

To set the channel cutoff frequency use the INPut:FILTer[:LPASs]:FREQuency < cutoff>, (@<ch list) command.

> The cutoff parameter can specify 2, 10, 100, MIN or MAX. MIN will specify 2 Hz while MAX will specify 100 Hz.

To set channels 0 through 15 and 24 to the 2 Hz cutoff frequency and channels 16 through 23 to the 100 Hz cutoff frequency send

INP:FILT:FREQ 2, (@100:115,124) INP:FILT:FREQ 100, (@116:123)

send separate command

per cutoff frequency

or to combine into a single command message

INP:FILT:FREQ 2, (@100:115,124);FREQ 100, (@116:123)

NOTE

The *RST and Power-On condition for cutoff frequency is MIN for all channels.

Querying the Filter **Cutoff Frequency**

To query any channel for its cutoff frequency use the INPut:FILTer[:LPASs]:FREQuency? (@<channel>) command. The INP:FILT:FREO? command returns the numeric cutoff value currently set for the channel specified.

The *channel* parameter must specify a single channel.

To query the cutoff frequency of channel 6 send

INP:FILT:FREQ? (@106) query channel 6 enter statement here returns 2, 10, or 100

Enabling and Disabling the Filter

To enable and disable channel filters use the INPut:FILTer[:LPASs][:STATe] < enable>, (@ < ch list) command.

The *enable* parameter can specify ON or OFF

To enable channels 0 through 15 and 20 to filter, send

INP:FILT ON, (@0:115,120) channels filtering as set by

INP:FILT:FREQ

To disable channels 0 through 8 send

INP:FILT OFF, (@100:108) channels 0-8 are now in pass-through mode

NOTES

1) INP:FILT ON is the *RST and Power-On condition for all filter channels.

2) INP:FILT OFF has a low-pass filter characteristic of approximately 1.5 kHz and limitations to signal levels. It is intended primarily for diagnostic use.

Querying the Filter State

To query any channel to determine if it is enabled or disabled use the INPut:FILTer[:LPASs][:STATe]? (@<channel>) command. The INP:FILT? command returns a 0 if the channel is OFF or a 1 if the channel is ON.

The *channel* parameter must specify a single channel.

To query the filter state of channel 2 send

INP:FILT? (@102) query channel 2 enter statement here returns 0 or 1

Setting the **Amplifier Gain**

To set the channel gain use the INPut:GAIN <gain>, (@<ch list>) command.

> The gain parameter can specify 1, 8, 64, MIN or MAX. MIN specifies 1 while MAX specifies 64. Note that the gain choices for this SCP are multiples of 8 to complement the VT1413C or Agilent/ HP E1313's A/D range choices which are multiples of 4. The following table shows the gain and range combinations.

A/D Range SCP Gain	16 V (A/D gain 1)	4 V (A/D gain 4)	1 V (A/D gain 16)	0.25 V (A/D gain 64)	0.0625 V (A/D gain 256)
1	1	4	16	64	256
8	8	32	128	512	2,048
64	64	256	1,024	4,096	not allowed

To set channels 32 through 47 and 63 to a channel gain of 8 and channels 48 through 55 to a channel gain of 64 send

INP:GAIN 8, (@132:147,163) send separate command INP:GAIN 64, (@148:155) per gain factor

Querying the **Amplifier Gain**

To guery any channel to determine its gain setting use the INPut:GAIN? (@<channel>) command. The INP:GAIN? command returns the current gain value for the specified channel.

The channel parameter must specify a single channel.

To query the gain setting of channel 8 send

INP:GAIN? (@108) query channel 8 enter statement here returns 1, 8, or 64

Detecting Open Transducers

This SCP provides a method to detect open transducers. When Open Transducer Detect (OTD) is enabled, the SCP injects a small current into the HIGH and LOW input of each channel. The polarity of the current pulls the HIGH inputs toward +17 volts and the LOW inputs towards -17 volts. If a transducer is open, measuring that channel will return an over-voltage reading. OTD is available on a per SCP basis. all eight channels of an SCP are enabled or disabled together. See Figure 5 for a simplified schematic diagram of the OTD circuit.

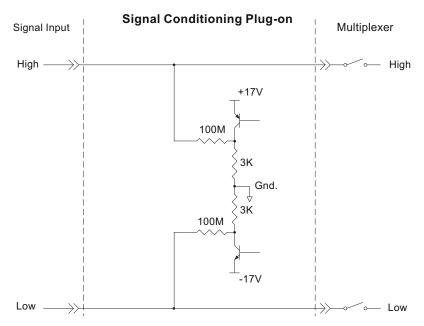


Figure 5 Open Transducer Detect Circuit

NOTES

- 1) When OTD is enabled, the inputs have up to $0.2~\mu A$ injected into them. If this current will adversely affect your measurement, but you still want to check for open transducers, you can enable OTD, make a single scan, check the CVT for bad measurements, then disable OTD and make your regular measurement scans. The specifications apply only when OTD is off.
- 2) When Filtering is enabled, allow 15 seconds or the filter capacitors to charge before checking for open transducers.

To enable or disable Open Transducer Detection, use the DIAGnostic:OTDetect <*enable*>, (@<*ch_list*>) command.

The enable parameter can specify ON or OFF

An SCP is addressed when the *ch_list* parameter specifies a channel number contained on the SCP. The first channel on each SCP is: 0, 8, 16, 24, 32, 40, 48 and 56

To enable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD ON, (@100,116)

0 is on SCP 1 and 16 is on SCP3

To disable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD OFF, (@100,116)

Register Based Programming

The register-based commands shown here are covered in Appendix D of the VT1413C or Agilent/HP E1313 manual. You should read that section first to become familiar with accessing registers and executing Register-Based Commands. This section will relate those commands to the parameter values which are specific to this Plug-on.

When Register Programming an SCP most communication is through the Signal Conditioning Bus. For that you will use the Register Commands:

```
SCBWRITE < regaddr> < regvalue>
SCBREAD? < regaddr>
```

VT1503A Register Map

Read (returned value)	Write(< regvalue>)	SCP Register	<regaddr> Value</regaddr>	
SCP ID (E0E0 ₁₆)		Whole SCP Reg 0	00ppp000000 ₂	
SCP Gain Scale (XXX3 ₁₆)		Whole SCP Reg 1	00ppp000001 ₂	
Channel Gain (XXX0 ₁₆ =1, XX	XX1 ₁₆ =8, XXX2 ₁₆ =64)	Channel Reg 1	01pppccc0012	
Channel Frequency (XXX0 ₁₆ = XXX2 ₁₆ =100Hz,XXX	2Hz, XXX1 ₁₆ =10Hz, X3 ₁₆ =Straight Through)	Channel Reg 2	01pppccc010 ₂	

XX=don't care

ppp=Plug-on ccc=SCP channel

In addition you will access bits in the Card Control register to control Open Transducer Detection.

Checking ID of SCP

To query an SCP for its ID value, write the following value to Parameter Register 1:

(SCP number) 40_{16}

Then write the opcode for SCBREAD? (0800₁₆) to the Command Register. The ID value will be written to the Query Response Register.

Setting the Filter Cut-Off

To set the filter cut-off frequency for an SCP channel, write the following SCP channel address to Parameter Register 1:

 200_{16} (SCP number) 40_{16} (SCP channel number) 8_{16} 2_{16} Write one of the following cut-off values to Parameter Register 2: 0000₁₆ for 2Hz, 0001₁₆ for 10Hz, 0002₁₆ for 100Hz,

0003₁₆ for Straight Through

Then write the opcode for SCBWRITE (0810₁₆) to the Command Register.

Setting the Amplifier Gain

To set the amplifier gain for an SCP channel, write the following SCP channel address to Parameter Register 1:

 200_{16} (SCP number) 40_{16} (SCP channel number) 8_{16} 1_{16} Write one of the following gain values to Parameter Register 2: 0000₁₆ for 1, 0001₁₆ for 8, 0002₁₆ for 64

Then write the opcode for SCBWRITE (0810₁₆) to the Command Register.

Detecting Open Transducers

Open Transducer Detection (OTD) is controlled by bits in the Card Control Register. For more information on OTD see Figure 1.

Card Control Register

(Base + 12_{16})

15	14	14-13	12	11	10-8	7-0
PSI Pwr Reset	FIFO Mode	unused	FIFO Clear	VPPEN	A24 Window	Open Transducer Detect

Writing a one (1) to a bit enables open transducer detect on that signal conditioning module. Writing a zero (0) to a bit disables open transducer detect.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCP 7	SCP 6	SCP 5	SCP 4	SCP 3	SCP 2	SCP 1	SCP 0

Specifications

These specifications for the VT1503A reflect the combined performance of the VT1413C or Agilent/HP E1313 and the VT1503A Signal Conditioning Plug-on. These specifications are not to be added to those presented in the VT1413C Agilent/HP E1313 User's Manual.

General Specifications

SCP Current Requirements (in Amps)	5Vmax 24Vtyp 24 0.01 0.04 0.0		typ -24V1 0.06	nax			
Measurement ranges							
DC Volts	± 3.9 mV to ± 16 V I	± 3.9 mV to ± 16 V FS					
Temperature	Thermocouples2 Thermistors - (Opt RTD's - (Opt 15 re	15 required)	-80 to +16	0°C			
Resistance	(Opt 15 required) 12	28 to 131 l	K FS				
Strain	25,000 μ e or limit o	of linear rang	ge of strain	gage			
Maximum input voltage (Normal mode plus common mode)	Ope	rating: < ±10	6 V peak	Damage lev	vel: > ±42	V peak	
Maximum common mode voltage	Ope	Operating: < ±16 V peak Damage level: > ±42 V peak				V peak	
Normal mode rejection	2 Hz Filter	10 Hz	Filter	100 Hz	Filter	Filter Off	
	@ 2 Hz -3 dB @ 60 Hz >-45 dB	@ 10 Hz @ 60 Hz	-3 dB >-20 dB	@ 100 H @ 400 H		@ 1.5 kHz approx -3 dB	
Common mode rejection	Gain X1		Gain X8			Gain X64	
(0 - 60 Hz)	>-100 dB		>-1	16 dB		>-132 dB	
Input impedance	100 M 10% (ea	ach different	ial input to	ground)			
Maximum tare cal offset	(Maxi	mum tare of	fset depen	ds on A/D ra	inge and S	CP gain)	
	A/D range ±V F.Scale						
	16 4 1 0.25 0.0625	16 3.2213 0.40104 0.04970 4 0.82101 0.10101 0.01220 1 0.23061 0.02721 0.00297 0.25 0.07581 0.00786 0.00055					

Measurement accuracy **DC Volts**

(90 days) 23°C±1°C (with *CAL? done after 1 hr warm up and CAL:ZERO? done within 5 min.). If autoranging is ON, add $\pm 0.02\%$ FS to accuracy specifications. For Agilent/HP E1313, multiply Noise Spec. by 1.4.

Gain X1	Range ±V FS	Linearity % of rdg	2 Hz	Offset 10 Hz	Error 100 Hz	Filt Off	Noise 3 sigma	Noise* 3 sigma
	0.0625	0.01%	$13 \mu V$	$9.5 \mu\mathrm{V}$	$6.8 \mu\mathrm{V}$	6.3 μV	45 μV	26 μV
	0.25	0.01%	15 μV	$12.5 \mu V$	$11.2 \mu\mathrm{V}$	$10.8 \mu\mathrm{V}$	63 μV	31 μV
	1	0.01%	$33 \mu V$	$31.8 \mu\mathrm{V}$	$31.3 \mu V$	31.2 μV	112 μV	93 μV
	4	0.01%	123 μV	$122 \mu V$	122 μV	122 μV	450 μV	366 μV
	16	0.01%	$488 \mu V$	$488 \mu V$	488 μV	488 μV	1.8 mV	1.5 mV

* [SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

Temperature Coefficients: Gain - 15 ppm/°C after *CAL?. Offset - Add tempco + fixed offset to offset above

Linearity

Temp	Tempco	2 Hz	10 Hz	100 Hz	Filt Off
0 - 30°C	$0.16 \mu V/^{\circ}C$	$0 \mu V$	$0 \mu V$	$0 \mu V$	$0 \mu V$
30 - 40°C	$0.18 \mu V/^{\circ}C$	$13 \mu V$	$9 \mu V$	$1.1 \mu\mathrm{V}$	$0.2 \mu\mathrm{V}$
40 - 55°C	$0.39 \mu V/^{\circ}C$	$31 \mu V$	$22 \mu V$	$6.4 \mu\mathrm{V}$	μV

Gain X8	VFS	% of rag	ZHZ	IUHZ	
	0.0078	0.01%	4.6 μV	$4.2 \mu\mathrm{V}$	
	0.004	0.010/		4 / 77	ı

Range

V FS	% of rdg	2Hz	10Hz	100Hz	Filt Off	3 sigma	3 sigma
				1			
0.0078	0.01%	$4.6 \mu\mathrm{V}$	$4.2 \mu\mathrm{V}$	$3.8 \mu V$	$3.7 \mu\mathrm{V}$	$5.8 \mu V$	4.9 μV
0.031	0.01%	$4.8~\mu\mathrm{V}$	$4.6 \mu\mathrm{V}$	$4.4~\mu\mathrm{V}$	$4.3 \mu\mathrm{V}$	6.9 μV^{**}	5.9 μV**
0.125	0.01%	$6 \mu V$	$5.3 \mu V$	5 μV	$4.9 \mu\mathrm{V}$	$14 \mu\mathrm{V}$	12 μV
0.5	0.01%	16 μV	$16 \mu\mathrm{V}$	16 μV	$16 \mu\mathrm{V}$	56 μV	46 μV
2	0.01%	$61 \mu V$	$61~\mu\mathrm{V}$	61 μV	61 μV	$225~\mu\mathrm{V}$	188 μV

Offset Error

Noise

Noise*

Temperature Coefficients: Gain - 15 ppm/°C after *CAL?. Offset - Add tempco + fixed offset to offset above

	15 ppiii	Curtor	CI IL	Ollber	rad tempeo	inted offset to	orract door.
	Temp	Teı	mpco	2 Hz	10 Hz	100 Hz	Filt Off
0	0 - 30 °C	0.16	μV/°C	$0 \mu V$	$0 \mu V$	$0 \mu V$	$0 \mu V$
3	30 - 40°C	0.18	μV/°C	$4.3 \mu V$	$2.7 \mu\text{V}$	$1 \mu V$	$0.2 \mu\mathrm{V}$
4	10 - 55°C	0.39	μV/°C	$13 \mu V$	$10 \mu V$	$6.2 \mu V$	$0.8 \mu V$

	Range	Linearity	2				Noise	Noise*
	V FS	% of rdg	2Hz	10Hz	100Hz	Filt Off	3 sigma	3 sigma
Gain X64								
	0.0039	0.01%	2.9 μV	$2.3~\mu\mathrm{V}$	$2.1 \mu\mathrm{V}$	$2.1 \mu\mathrm{V}$	1.6 μV**	1.3 μV**
	0.0156	0.01%	3 μV	$2.4~\mu V$	$2.2 \mu V$	$2.2 \mu\text{V}$	2.2μV***	1.9μV***
	0.0625	0.01%	$3.5 \mu V$	$3 \mu V$	$2.9 \mu V$	$2.9 \mu\mathrm{V}$	7 μV	5.7 μV
	0.25	0.01%	8.2 uV	$8 \mu V$	8 uV	8 uV	28 uV	23 uV

^{* [}SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

Temperature Coefficients: Gain - 15 ppm/°C after *CAL?. Offset - Add tempco + fixed offset to table above

Temp	Tempco	2 Hz	10 Hz	100 Hz	Filt Off
0 - 30 °C	$0.16 \mu V/^{\circ}C$	$0 \mu V$	$0 \mu V$	$0 \mu V$	$0 \mu V$
30 - 40°C	$0.18 \mu\text{V}/^{\circ}\text{C}$	$1.1~\mu V$	$0.2 \mu V$	$0.1~\mu V$	$0.1 \mu V$
40 - 55°C	$0.39 \mu V/^{\circ}C$	$6 \mu V$	$1.4 \mu V$	$0.6 \mu V$	$0.6 \mu V$

^{* [}SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

^{** 7.4} μ V and 6.3 μ V when temp >= 40°C

^{** 1.9} μ V and 1.7 μ V for 100 Hz Filter

^{***} $2.5 \mu V$ and $2.2 \mu V$ when temp >= $40^{\circ} C$

Measurement accuracy **Temperature**

(simplified specifications, see temperature accuracy graphs in the VT1413C or Agilent/HP E1313 manual for details)

(90 days) 23°C ±1°C (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min.). If autoranging is ON, add $\pm .02\%$ FS to accuracy specifications.

The temperature accuracy specifications include instrument and firmware linearization errors. The linearization algorithm used is based on the IPTS-68(78) standard transducer curves. Add your transducer accuracy to determine total measurement error.

Thermocouples

NOTE: ALL Thermocouple Specifications Use Gain X64

Type E	A/D Filter	-200 to 0°C	0 to 200°C	200 to 400°C	400 to 800°C
	OFF ON*	1.25°C 1.20°C	0.10°C 0.095 C	0.12°C 0.10°C	0.125°C 0.11°C
Type EEXtended	A/D Filter	-200 to 0°C	0 to 200°C	200 to 800°C	800 to 1000°C
	OFF ON*	13.4°C 13.3°C	0.30°C 0.25°C	0.20°C 0.15°C	0.35°C 0.30°C
Type J	A/D Filter	-200 to 0°C	0 to 280°C	280 to 600°C	600 to 775°C
	OFF ON*	1.50°C 1.47°C	0.10°C 0.11°C	0.15°C 0.15°C	0.17°C 0.15°C
Type K	A/D Filter	-200 to 0°C	0 to 375°C	375 to 800°C	800 to 1400°C
	OFF ON*	2.25°C 2.70°C	0.15°C 0.15°C	0.20°C 0.17°C	0.25°C 0.25°C
Type R	A/D Filter	0 to 100°C	100 to 200°C	200 to 600°C	600 to 1000°C
	OFF ON*	1.40°C 1.40°C	0.75°C 0.70°C	0.45°C 0.40°C	0.30°C 0.30°C
Type S	A/D Filter	0 to 100°C	100 to 200°C	200 to 800°C	800 to 1750°C
	OFF ON*	2.85°C 2.85°C	1.35°C 1.80°C	0.70°C 0.65°C	0.65°C 0.55°C
Type T	A/D Filter	-200 to -100°C	-100 to 0°C	0 to 200°C	200 to 400°C
	OFF ON*	1.35°C 1.35°C	0.25°C 0.22°C	0.10°C 0.10°C	0.15°C 0.13°C

^{* [}SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

Measurement accuracy **Temperature (cont.)**

(simplified specifications, see temperature accuracy graphs in $\mbox{ VT1413C}$ or Agilent/HP E1313 manual for details)

Thermistors

5 k Reference Thermistor Use Gain X8

1 CICICIO	, 1110111113101					
		A/D Filter	0 to 45°C	45 to 65°C	65 to 85°C	
		OFF ON*	0.0035°C 0.0035°C	0.0045°C 0.0045°C	0.0072°C 0.0068°C	
100 Reference RTD Use Gain X64						
		A/D Filter	-125 to 70°C			
		OFF ON*	0.080°C 0.080°C			
	100 RTD	Use Gain X64				
		A/D Filter	-200 to 75°C	75 to 300°C	300 to 600°C	600 to 970°C
		OFF ON*	0.08°C 0.07°C	0.21°C 0.18°C	0.27°C 0.25°C	0.37°C 0.35°C
2252	Thermistor	Use Gain X8				
		A/D Filter	10 to 40°C	40 to 70°C	70 to 83°C	83 to 100°C
		OFF ON*	0.0055°C 0.0055°C	0.0065°C 0.0065°C	0.0077°C 0.0077°C	0.010°C 0.010°C
5 k	Thermistor	Use Gain X8				
		A/D Filter	-10 to 20°C	20 to 40°C	40 to 65°C	65 to 85°C
		OFF ON*	0.0085°C 0.0082°C	0.010°C 0.010°C	0.016°C 0.015°C	0.018°C 0.018°C
10 k	Thermistor	Use Gain X8				
		A/D Filter	0 to 30°C	30 to 60°C	60 to 90°C	90 to 115°C
		OFF ON*	0.010°C 0.010°C	0.012°C 0.012°C	0.018°C 0.018°C	0.022°C 0.021°C